REACTION OF N-ACYLISOQUINOLINIUM SALTS WITH THIAZOLIDONES in situ

A. K. Sheinkman, A. A. Deikalo, and S. N. Baranov

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 1, pp. 130-131, 1970

UDC 547,833,7'789,3

We have previously shown that N-acylisoquinolinium salts are extremely convenient for the electrophilic replacement of a hydrogen atom in nucleophilic aromatic compounds by an isoquinoline residue [1,2].

Similarly, in the reaction of isoquinoline with various thiazolidones in the presence of acyl halides it was possible to obtain derivatives of 1-acyl-1,2-dihydroisoquinolylthiazolidones (table).

The compounds obtained by alkaline hydrolysis can easily be converted into thioglycolic acids of the isoquinoline series, for example:

When 5-(2'-benzoyl-1', 2'-dihydroisoquinol-1'-yl)-3-phenylthiazolidine-2, 4-dione (I) was heated with alkali we obtained 2-benzoyl-1, 2-dihydroisoquinol-1-ylthioglycolic acid (V), mp 95.6° C; a qualitative test for a sulfhydryl group with sodium nitroprusside was positive. Found, %: C 66.93; H 4.88; N 4.73; S 9.01. Calculated for $C_{18}H_{15}NO_3S$, %: C 66.44; H 4.64; N 4.30; S 9.85.

Compound	R	Rı	x	Mp, °C	Empirical formula	Found, %				Calculated, %				1,%
						С	н	N	s	С	н	N	s	Yield,
1	C ₆ H ₅	C ₆ H ₅	0	189190	C ₂₅ H ₁₈ N ₂ O ₃ S	70.28 71.05			7,25	70.4 0	4,25	6.56	7,51	64
11	C ₆ H ₅	C₂H₅	s	162.4—163	C ₂₁ H ₁₈ N ₂ O ₂ S ₂	63.59 63.89				63.93	4,59	7,10	16.25	51
111	C ₅ H ₅	C ₆ H ₅	N−C₅H₅	212.5—213	$C_{31}H_{23}N_3O_2S$	74.30 73.96		8.41 8.58	6.27 6.0	74.23	4.62	8.37	6.39	87
IV	C ₆ H ₅	C ₆ H ₅	s	211—212	C ₂₅ H ₁₈ N ₂ O ₂ S ₂	68.44 68.58				67.85	4.09	6.32	14,49	97.7

1-Acyl-1, 2-dihydroisoquinolylthiazolidone Derivatives

REFERENCES

- 1. A. K. Sheinkman and A. K. Tokarev, KhGS [Chemistry of Heterocyclic Compounds], 5, 955, 1969.
- 2. A. K. Sheinkman and A. A. Deikalo, KhGS [Chemistry of Heterocyclic Compounds] (in press).

25 June 1969

Donetsk State University